This thesis considers sequential decision problems, where the loss/reward incurred by selecting an action may not be inferred from observed feedback. A major part of this thesis focuses on the unsupervised sequential selection problem, where one can not infer the loss incurred for selecting an action from observed feedback. We also introduce a new setup named Censored Semi Bandits, where the loss incurred for selecting an action can be observed under certain conditions. Finally, we study the channel selection problem in the communication networks, where the reward for an action is only observed when no other player selects that action to play in the round. These problems find applications in many fields like healthcare, crowd-sourcing, security, adaptive resource allocation, among many others. This thesis aims to address the above-described sequential decision problems by exploiting specific structures these problems exhibit. We develop provably optimal algorithms for each of these setups with weak feedback and validate their empirical performance on different problem instances derived from synthetic and real datasets.


翻译:该论文考虑了顺序决定问题,其中选择行动所造成的损失/回报不能从观察到的反馈中推断出来。本论文的主要部分侧重于未经监督的顺序选择问题,其中无法推断从观察到的反馈中选择行动所造成的损失。我们还引入了一个新的设置,名为Cenored Sime Bridits, 在某些条件下可以观察到选择行动所造成的损失。最后,我们研究了通信网络中的频道选择问题,只有在没有其他参与者选择该行动在回合中发挥作用时才观察到该行动的奖赏。这些问题在许多领域,如保健、众包、安全、适应性资源分配等,都存在应用问题。本论文的目的是通过利用这些问题所展示的具体结构,解决上面描述的顺序决定问题。我们为每一个这些组合开发了最优化的算法,对来自合成和真实数据集的不同问题案例的经验性表现进行了验证。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月20日
Deep reinforcement learning from human preferences
Arxiv
0+阅读 · 2023年2月17日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员