Determining physical properties inside an object without access to direct measurements of target regions can be formulated as a specific type of \textit{inverse problem}. One of such problems is applied in \textit{Electrical Impedance Tomography} (EIT). In general, EIT can be posed as a minimization problem and solved by iterative methods, which require knowledge of derivatives of the objective function. In practice, this can be challenging because analytical closed-form solutions for them are hard to derive and implement efficiently. In this paper, we study the effectiveness of \textit{automatic differentiation (AD)} to solve EIT in a minimization framework. We devise a case study where we compare solutions of the inverse problem obtained with AD methods and with the manually-derived formulation of the derivative against the true solution. Furthermore, we study the viability of AD for large scale inverse problems by checking the memory and load requirements of AD as the resolution of the model increases. With powerful infrastructure, AD can pave the way for faster and simpler inverse solvers and provide better results than classical methods.
翻译:在无法直接测量目标区域的物体内确定物理特性时,可以将这种特性设计成一种特定类型的 \ textit{ 反质问题}。其中一个问题是在\ textit{ 电子阻力成像} (EIT)中应用的。一般来说,经济转型期可以作为一个最小化的问题,通过迭代方法加以解决,这些方法需要了解目标功能的衍生物。在实际中,这可能具有挑战性,因为分析封闭式解决办法很难产生和有效实施。在本文件中,我们研究了\ textit{ 自动区分(AD)} 的有效性,以便在最小化的框架内解决经济转型期问题。我们设计了一个案例研究,将用反倾销方法和人工制成的衍生物的反向问题的解决办法与真正的解决办法进行比较。此外,我们通过在模型分辨率增加时检查反倾销的内存和负载要求,对大范围问题的可行性进行了研究。有了强大的基础设施,反倾销可以为更快和更简单的反向解答器铺路,并提供比古典方法更好的结果。