We propose and analyse an explicit boundary-preserving scheme for the strong approximations of some SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The scheme consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L^{p}(\Omega)$-convergence of order $1$, for every $p \in \mathbb{N}$, of the scheme and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting scheme to other numerical schemes for SDEs.
翻译:暂无翻译