The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, phylogenetic reconstruction, MCMC algorithms, and community detection in random graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves Bayes-optimal performance for the reconstruction problem of predicting the value of the Markov process at the root of the tree from its values at the leaves. Recently, the analysis of low-degree polynomials has emerged as a valuable tool for predicting computational-to-statistical gaps. In this work, we investigate the performance of low-degree polynomials for the reconstruction problem on trees. Perhaps surprisingly, we show that there are simple tree models with $N$ leaves where (1) nontrivial reconstruction of the root value is possible with a simple polynomial time algorithm and with robustness to noise, but not with any polynomial of degree $N^{c}$ for $c > 0$ a constant, and (2) when the tree is unknown and given multiple samples with correlated root assignments, nontrivial reconstruction of the root value is possible with a simple, noise-robust, and computationally efficient SQ (Statistical Query) algorithm but not with any polynomial of degree $N^c$. These results clarify some of the limitations of low-degree polynomials vs. polynomial time algorithms for Bayesian estimation problems. They also complement recent work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief Propagation. We pose related open questions about low-degree polynomials and the Kesten-Stigum threshold.


翻译:Markov进程和树木广播的研究与一系列领域有着深刻的联系,包括统计物理、植物基因重建、MCMC算法和随机图中的社区检测。值得注意的是,值得称赞的信仰促进算法实现了重建问题的Bayes-最佳性能,从树根的树值中预测Markov进程的价值,从树叶的值中得出。最近,低度多米亚的分析已经成为一种宝贵的工具,用来预测平流至统计水平的差距。在这项工作中,我们调查了树重建问题的低度多度多级混合算法的性能。也许令人惊讶的是,我们发现有简单的树模型,用美元叶叶的叶子实现了Bayes-最佳性性能的重建,通过简单的多元性时间算法和声音的稳健性,但是,对于低度的多度多度多度多度多度多度多度多度的多度多度的多度的多度的多度的多度的多度分数级数级数级数值。 当树被了解和多度的多度的本性多度分析后, 也发现了有关树木的本性任务、非端性性性性性级的分子的分子的分子的分子性平流值的亚值 。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
9+阅读 · 2021年10月1日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员