\ac{fl} proposed a distributed \ac{ml} framework where every distributed worker owns a complete copy of global model and their own data. The training is occurred locally, which assures no direct transmission of training data. However, the recent work \citep{zhu2019deep} demonstrated that input data from a neural network may be reconstructed only using knowledge of gradients of that network, which completely breached the promise of \ac{fl} and sabotaged the user privacy. In this work, we aim to further explore the theoretical limits of reconstruction, speedup and stabilize the reconstruction procedure. We show that a single input may be reconstructed with the analytical form, regardless of network depth using a fully-connected neural network with one hidden node. Then we generalize this result to a gradient averaged over batches of size $B$. In this case, the full batch can be reconstructed if the number of hidden units exceeds $B$. For a \ac{cnn}, the number of required kernels in convolutional layers is decided by multiple factors, e.g., padding, kernel and stride size, etc. We require the number of kernels $h\geq (\frac{d}{d^{\prime}})^2C$, where we define $d$ as input width, $d^{\prime}$ as output width after convolutional layer, and $C$ as channel number of input. We validate our observation and demonstrate the improvements using bio-medical (fMRI, \ac{wbc}) and benchmark data (MNIST, Kuzushiji-MNIST, CIFAR100, ImageNet and face images).


翻译:\ ac{ fl} 提议了一个分布式框架, 每个分布式工人都拥有完整的全球模型副本和他们自己的数据。 培训是在本地进行的, 保证培训数据不会直接传输。 然而, 最近的工作 \ citep{ zhu2019deep} 显示, 神经网络的输入数据只能使用对网络梯度的了解来重建, 这完全违背了 ca{ fl} 的诺言, 并破坏了用户隐私。 在此工作中, 我们的目标是进一步探索重建、 加速和稳定重建程序的理论限制 。 我们显示, 单项输入可以通过分析形式进行重建, 不论网络深度如何, 使用完全连接的神经网络网络和一个隐藏节点 。 然后, 我们将这一结果概括为平均的递增量, 超过网络梯度 $BIFI 的值。 对于 $ ac{c{ c} 的面值观察, 显示需要改进的内层数量, 以我们 $. c. decrideal 和 nual endal 等因素决定 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员