The blind deconvolution problem amounts to reconstructing both a signal and a filter from the convolution of these two. It constitutes a prominent topic in mathematical and engineering literature. In this work, we analyze a sparse version of the problem: The filter $h\in \mathbb{R}^\mu$ is assumed to be $s$-sparse, and the signal $b \in \mathbb{R}^n$ is taken to be $\sigma$-sparse, both supports being unknown. We observe a convolution between the filter and a linear transformation of the signal. Motivated by practically important multi-user communication applications, we derive a recovery guarantee for the simultaneous demixing and deconvolution setting. We achieve efficient recovery by relaxing the problem to a hierarchical sparse recovery for which we can build on a flexible framework. At the same time, for this we pay the price of some sub-optimal guarantees compared to the number of free parameters of the problem. The signal model we consider is sufficiently general to capture many applications in a number of engineering fields. Despite their practical importance, we provide first rigorous performance guarantees for efficient and simple algorithms for the bi-sparse and generalized demixing setting. We complement our analytical results by presenting results of numerical simulations. We find evidence that the sub-optimal scaling $s^2\sigma \log(\mu)\log(n)$ of our derived sufficient condition is likely overly pessimistic and that the observed performance is better described by a scaling proportional to $ s\sigma$ up to log-factors.
翻译:盲分解问题等于重建信号和过滤器。 它在数学和工程学文献中是一个突出的话题。 在这项工作中, 我们分析了一个稀少的问题版本: 过滤器$h\ in\ mathbb{R ⁇ mu$ 被假定为是 $s- smarse, 而信号$b\ in\ mathbb{R ⁇ \\\\\\n$ 美元被假定为 $\ sigma$- smarse, 两者都支持未知。 我们观察到信号过滤器和线性转换之间的混杂。 受具有实际重要性的多用户通信应用的驱动, 我们为同时的解析和解析设置了复苏保证。 我们通过将问题降级到一个等级, 我们可以在一个灵活的框架上建立。 同时, 我们支付一些次优化的保证的价格, 与问题自由参数的数量相比。 我们认为信号模型足够笼统, 能够捕捉到许多工程领域的应用。 尽管它们具有实际重要性, 我们为同时的解析和解析设置了一种精确的运算结果, 我们通过一个高效和简单分析的算法, 我们通过观察的平级的平级的平级的平比的平比的平级的平比的平比结果 找到了, 我们的平比的平比的平比的平级的平比的平级的平级的 。