Dijkstra's algorithm is one of the most popular classic path planning algorithms, achieving optimal solutions across a wide range of challenging tasks. However, it only calculates the shortest distance from one vertex to another, which is hard to directly apply to the Dynamic Multi-Sources to Single-Destination (DMS-SD) problem. This paper proposes a modified Dijkstra algorithm to address the DMS-SD problem, where the destination can be dynamically changed. Our method deploys the concept of Adjacent Matrix from Floyd's algorithm and achieves the goal with mathematical calculations. We formally show that all-pairs shortest distance information in Floyd's algorithm is not required in our algorithm. Extensive experiments verify the scalability and optimality of the proposed method.
翻译:Dijkstra的算法是最受欢迎的经典路径规划算法之一,在一系列具有挑战性的任务中实现最佳解决方案。 但是,它只计算从一个顶点到另一个顶点的最短距离, 这很难直接适用于动态多源到单一目的地(DMS-SD)的问题。 本文建议修改Dijkstra算法, 以解决目的地可以动态改变的DMS- SD问题。 我们的方法从弗洛伊德的算法中采用对称矩阵概念, 并通过数学计算实现目标。 我们正式显示, 在我们的算法中不需要 Floyd 算法中所有最短的距离信息。 广泛的实验可以验证拟议方法的可扩展性和最佳性 。