In this note, we revisit the recent work of Diakonikolas, Gouleakis, Kane, Peebles, and Price (2021), and provide an alternative proof of their main result. Our argument does not rely on any specific property of Poisson random variables (such as stability and divisibility) nor on any "clever trick," but instead on an identity relating the expectation of the absolute value of any random variable to the integral of its characteristic function: \[ \mathbb{E}[|X|] = \frac{2}{\pi}\int_0^\infty \frac{1-\Re(\mathbb{E}[e^{i tX}])}{t^2}\, dt \] Our argument, while not devoid of technical aspects, is arguably conceptually simpler and more general; and we hope this technique can find additional applications in distribution testing.
翻译:在本说明中,我们重新审视了Diakonikolas、Gouleakis、Kane、Peebles和Price(2021年)最近的工作,并提供了其主要结果的替代证明。我们的论点并不依赖于Poisson随机变量(如稳定性和可分性)的任何具体属性,也不依赖于任何“奇技 ”,而是依赖于将任何随机变量的绝对价值与其特性功能的内在组成部分相联系的认同:\[\mathbb{E}[ ⁇ X ⁇ ] =\frac{2/hunpü}_0 ⁇ infty\frac{1-\\\\\\\(mathbb}E}}} ⁇ t ⁇ 2 ⁇, dt \] 我们的论点虽然不缺乏技术方面,但在概念上比较简单和笼统;我们希望这一技术在分销测试中能找到更多的应用。