In this paper, we consider the problem of domain generalization in semantic segmentation, which aims to learn a robust model using only labeled synthetic (source) data. The model is expected to perform well on unseen real (target) domains. Our study finds that the image style variation can largely influence the model's performance and the style features can be well represented by the channel-wise mean and standard deviation of images. Inspired by this, we propose a novel adversarial style augmentation (AdvStyle) approach, which can dynamically generate hard stylized images during training and thus can effectively prevent the model from overfitting on the source domain. Specifically, AdvStyle regards the style feature as a learnable parameter and updates it by adversarial training. The learned adversarial style feature is used to construct an adversarial image for robust model training. AdvStyle is easy to implement and can be readily applied to different models. Experiments on two synthetic-to-real semantic segmentation benchmarks demonstrate that AdvStyle can significantly improve the model performance on unseen real domains and show that we can achieve the state of the art. Moreover, AdvStyle can be employed to domain generalized image classification and produces a clear improvement on the considered datasets.
翻译:在本文中,我们考虑了语义区块的域常规化问题, 目的是只用标签合成( 源) 数据来学习一个强大的模型。 该模型预计将在不可见的真实( 目标) 域上运行良好。 我们的研究发现, 图像样式的变异可以在很大程度上影响模型的性能, 风格特征可以通过频道的平均值和图像的标准偏差来很好地体现。 由此, 我们提出一种新的对抗性风格增强( AdvStyle) 方法, 可以动态地在培训期间生成硬的星体化图像, 从而能够有效防止模型在源域上过度配置。 具体地说, AdvStyle 将风格特征视为一个可学习的参数, 并通过对抗性培训加以更新。 所学的对抗性风格特征被用来为强健的模型培训构建一个对抗性图像。 AdvStyle很容易实施, 并且可以很容易适用于不同的模型。 在两个合成到真实的语义区块分割基准上进行的实验表明, AdvStyle可以显著地改进了在无形域域域上的模型性功能, 。