Although generative facial prior and geometric prior have recently demonstrated high-quality results for blind face restoration, producing fine-grained facial details faithful to inputs remains a challenging problem. Motivated by the classical dictionary-based methods and the recent vector quantization (VQ) technique, we propose a VQ-based face restoration method - VQFR. VQFR takes advantage of high-quality low-level feature banks extracted from high-quality faces and can thus help recover realistic facial details. However, the simple application of the VQ codebook cannot achieve good results with faithful details and identity preservation. Therefore, we further introduce two special network designs. 1). We first investigate the compression patch size in the VQ codebook and find that the VQ codebook designed with a proper compression patch size is crucial to balance the quality and fidelity. 2). To further fuse low-level features from inputs while not "contaminating" the realistic details generated from the VQ codebook, we proposed a parallel decoder consisting of a texture decoder and a main decoder. Those two decoders then interact with a texture warping module with deformable convolution. Equipped with the VQ codebook as a facial detail dictionary and the parallel decoder design, the proposed VQFR can largely enhance the restored quality of facial details while keeping the fidelity to previous methods.
翻译:尽管先前和前几何的基因面部先前和前几何都最近显示,盲人面部恢复工作取得了高质量的结果,但生成了忠实于投入的细微面部细节仍是一个棘手问题。我们受古典字典法和最近矢量定量技术的启发,提出了基于VQ的面部恢复方法-VQFR。 VQFR利用从高质量面部提取的高质量低级特征库,从而帮助恢复现实面部细节。然而,简单应用 VQ 代码库无法以忠实的细节和身份保存取得良好结果。因此,我们进一步引入了两个特殊的网络设计。 1 我们首先调查了VQ 代码库中的压缩补丁大小,并发现用适当的压缩补丁尺寸设计的VQ代码库对于平衡质量和忠诚至关重要。 2 为了进一步整合从从高品质的低级数据库中提取的低级特征,同时不“延续”从VQ代码中产生的现实细节,我们提议了一个平行的解码器,由纯度解码解码和主要解码构成。这两位解码师随后与文本缩缩缩缩缩缩模块进行互动互动,同时将原面面面面面面面部结构结构结构结构结构结构结构结构图的恢复。