Low-dose computed tomography (CT) allows the reduction of radiation risk in clinical applications at the expense of image quality, which deteriorates the diagnosis accuracy of radiologists. In this work, we present a High-Quality Imaging network (HQINet) for the CT image reconstruction from Low-dose computed tomography (CT) acquisitions. HQINet was a convolutional encoder-decoder architecture, where the encoder was used to extract spatial and temporal information from three contiguous slices while the decoder was used to recover the spacial information of the middle slice. We provide experimental results on the real projection data from low-dose CT Image and Projection Data (LDCT-and-Projection-data), demonstrating that the proposed approach yielded a notable improvement of the performance in terms of image quality, with a rise of 5.5dB in terms of peak signal-to-noise ratio (PSNR) and 0.29 in terms of mutual information (MI).
翻译:低剂量计算断层摄影(CT)可以降低临床应用中的辐射风险,而降低图像质量,从而降低放射学家的诊断准确性。在这项工作中,我们提出了一个高质量成像网络(HQINet),用于从低剂量计算断层摄影(CT)获得的CT图像重建。HQINet是一个共变编码解密结构,其中编码器用于从三个毗连切片中提取空间和时间信息,而解码器则用于恢复中切片的平静信息。我们提供了关于低剂量CT图像和预测数据(LDCT和预测数据)真实预测数据的实验结果。我们从低剂量图像和预测数据(LDCT-和预测数据)中提供了实验结果,表明拟议方法在图像质量方面取得了显著的绩效改善,在最高信号对噪音比率方面增加了5.5dB,在相互信息方面增加了0.29。