As quantum computing technology continues to mature, industry is adopting modular quantum architectures to keep quantum scaling on the projected path and meet performance targets. However, the complexity of chiplet-based quantum devices, coupled with their growing size, presents an imminent scalability challenge for quantum compilation. Contemporary compilation methods are not well-suited to chiplet architectures. In particular, existing qubit allocation methods are often unable to contend with inter-chiplet links, which don't necessary support a universal basis gate set. Furthermore, existing methods of logical-to-physical qubit placement, swap insertion (routing), unitary synthesis, and/or optimization are typically not designed for qubit links of wildly varying levels of duration or fidelity. In this work, we propose SEQC, a complete and parallelized compilation pipeline optimized for chiplet-based quantum computers, including several novel methods for qubit placement, qubit routing, and circuit optimization. SEQC attains up to a 36% increase in circuit fidelity, accompanied by execution time improvements of up to 1.92x. Additionally, owning to its ability to parallelize compilation, SEQC achieves consistent solve time improvements of 2-4x over a chiplet-aware Qiskit baseline.
翻译:暂无翻译