Low-rank approximations are essential in modern data science. The interpolative decomposition provides one such approximation. Its distinguishing feature is that it reuses columns from the original matrix. This enables it to preserve matrix properties such as sparsity and non-negativity. It also helps save space in memory. In this work, we introduce two optimized algorithms to construct an interpolative decomposition along with numerical evidence that they outperform the current state of the art.
翻译:低级近似值是现代数据科学中必不可少的。 中间分解提供了一种近似值。 其显著特征是它重新使用原始矩阵中的列。 这使得它能够保存矩阵属性, 如宽度和非负负性。 它还有助于保存记忆空间。 在这项工作中, 我们引入了两种优化算法, 以构建一种中间分解, 以及数字证据, 表明它们比目前艺术水平高。