Enhancing the spatio-temporal observability of distributed energy resources (DERs) is crucial for achieving secure and efficient operations in distribution grids. This paper puts forth a joint recovery framework for residential loads by leveraging the complimentary strengths of heterogeneous types of measurements. The proposed approaches integrate the low-resolution smart meter data collected for every load node with the fast-sampled feeder-level measurements provided by limited number of phasor measurement units. To address the lack of data, we exploit two key characteristics for the loads and DERs, namely the sparse changes due to infrequent activities of appliances and electric vehicles (EVs) and the locational dependence of solar photovoltaic (PV) generation. Accordingly, meaningful regularization terms are introduced to cast a convex load recovery problem, which will be further simplified to reduce computational complexity. The load recovery solutions can be utilized to identify the EV charging events at each load node and to infer the total behind-the-meter PV output. Numerical tests using real-world data have demonstrated the effectiveness of the proposed approaches in enhancing the visibility of these grid-edge DERs.


翻译:增强分布式能源资源(DERs)的瞬时可观测性对于在分布式电网中实现安全有效的操作至关重要。本文件提出了一个住宅负荷联合回收框架,利用多种测量类型的互补优势。拟议办法将为每个装载节点收集的低分辨率智能计量数据与数量有限的散装测量单位提供的快速抽样支线测量相结合。为解决数据缺乏问题,我们利用了负荷和DERs的两个关键特征,即由于电器和电动车辆的不经常活动以及太阳能光伏发电对地点的依赖而导致的微小变化。因此,引入了有意义的正规化条件,以造成一个螺旋载荷回收问题,将进一步简化以降低计算复杂性。负载回收解决方案可用于确定每个装载节点的EV充电事件,并推断总后计PV产出。使用现实世界数据进行的数值测试表明,拟议方法在提高这些电网端DERs的可见度方面是有效的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2017年10月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
0+阅读 · 2021年9月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2017年10月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员