The boundary conditions (BCs) have shown great potential in requirements engineering because a BC captures the particular combination of circumstances, i.e., divergence, in which the goals of the requirement cannot be satisfied as a whole. Existing researches have attempted to automatically identify lots of BCs. Unfortunately, a large number of identified BCs make assessing and resolving divergences expensive. Existing methods adopt a coarse-grained metric, generality, to filter out less general BCs. However, the results still retain a large number of redundant BCs since a general BC potentially captures redundant circumstances that do not lead to a divergence. Furthermore, the likelihood of BC can be misled by redundant BCs resulting in costly repeatedly assessing and resolving divergences. In this paper, we present a fine-grained metric to filter out the redundant BCs. We first introduce the concept of contrasty of BC. Intuitively, if two BCs are contrastive, they capture different divergences. We argue that a set of contrastive BCs should be recommended to engineers, rather than a set of general BCs that potentially only indicates the same divergence. Then we design a post-processing framework (PPAc) to produce a set of contrastive BCs after identifying BCs. Experimental results show that the contrasty metric dramatically reduces the number of BCs recommended to engineers. Results also demonstrate that lots of BCs identified by the state-of-the-art method are redundant in most cases. Besides, to improve efficiency, we propose a joint framework (JAc) to interleave assessing based on the contrasty metric with identifying BCs. The primary intuition behind JAc is that it considers the search bias toward contrastive BCs during identifying BCs, thereby pruning the BCs capturing the same divergence. Experiments confirm the improvements of JAc in identifying contrastive BCs.


翻译:边界条件( BCs) 在需求工程中显示出巨大的潜力,因为 BC 捕捉了特定环境组合的多余的 BC, 即差异, 无法整体满足要求的目标。 现有的研究试图自动识别大量 BCs 。 不幸的是, 大量已查明的 BCs 使得评估和解决差异变得昂贵。 现有方法采用粗化的衡量标准, 笼统, 过滤不那么一般的 BCs 。 但是, 结果是大量多余的 BCs, 因为一般的 BC 可能捕捉不导致差异的多余情况。 此外, 重复的 BCs 可能会被重复的 BCs 误差所误导, 导致反复评估和解决差异。 在本文件中, 我们提出了一个精细的衡量标准, 过滤多余的 BCs 。 如果两个 BCsals 具有对比性, 就会捕捉到不同的差异。 我们认为, 一组对比性的 BCSBs, 而不是一套可能显示差异的通用 BCsalds 。 然后, 我们提出一个后级的BCalalal 格式框架, 显示一个比 。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【KDD2020-清华大学】图对比编码的图神经网络预训练
专知会员服务
43+阅读 · 2020年6月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【KDD2020-清华大学】图对比编码的图神经网络预训练
专知会员服务
43+阅读 · 2020年6月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员