Many scientific and technological problems are related to optimization. Among them, black-box optimization in high-dimensional space is particularly challenging. Recent neural network-based black-box optimization studies have shown noteworthy achievements. However, their capability in high-dimensional search space is still limited. This study investigates a novel black-box optimization method based on evolution strategy and generative neural network model. We designed the algorithm so that the evolutionary strategy and the generative neural network model work cooperatively with each other. This hybrid model enables reliable training of surrogate networks; it optimizes multi-objective, high-dimensional, and stochastic black-box functions. In this experiment, our method outperforms baseline optimization methods, including an NSGA-II and Bayesian optimization.
翻译:许多科学和技术问题都与优化有关,其中,高维空间的黑盒优化特别具有挑战性。最近的神经网络黑盒优化研究表明了值得注意的成就。然而,他们在高维搜索空间的能力仍然有限。这项研究根据进化策略和基因神经网络模型调查了一个新型黑盒优化方法。我们设计了算法,使进化策略和基因神经网络模型能够相互合作。这种混合模型能够对代孕网络进行可靠的培训;它优化了多目标、高维和随机黑盒功能。在这个实验中,我们的方法优于基线优化方法,包括NSGA-II和Bayesian优化。