As a promising distributed learning technology, analog aggregation based federated learning over the air (FLOA) provides high communication efficiency and privacy provisioning in edge computing paradigm. When all edge devices (workers) simultaneously upload their local updates to the parameter server (PS) through the commonly shared time-frequency resources, the PS can only obtain the averaged update rather than the individual local ones. As a result, such a concurrent transmission and aggregation scheme reduces the latency and costs of communication but makes FLOA vulnerable to Byzantine attacks which then degrade FLOA performance. For the design of Byzantine-resilient FLOA, this paper starts from analyzing the channel inversion (CI) power control mechanism that is widely used in existing FLOA literature. Our theoretical analysis indicates that although CI can achieve good learning performance in the non-attacking scenarios, it fails to work well with limited defensive capability to Byzantine attacks. Then, we propose a novel defending scheme called best effort voting (BEV) power control policy integrated with stochastic gradient descent (SGD). Our BEV-SGD improves the robustness of FLOA to Byzantine attacks, by allowing all the workers to send their local updates at their maximum transmit power. Under the strongest-attacking circumstance, we derive the expected convergence rates of FLOA with CI and BEV power control policies, respectively. The rate comparison reveals that our BEV-SGD outperforms its counterpart with CI in terms of better convergence behavior, which is verified by experimental simulations.


翻译:作为有希望的分布式学习技术,基于模拟聚合的航空联合学习(FLOA)在边缘计算范式中提供了较高的通信效率和隐私。当所有边缘设备(工人)通过共享的时间频率资源同时将其本地更新上传到参数服务器(PS)时,PS只能获得平均更新,而不是单个本地更新。因此,这种同时的传输和汇总计划降低了通信的潜伏度和成本,但使Fyzantine袭击容易受Byzantine袭击影响,从而降低FLOA的性能。对于Byzantine-Relient FLOA的设计,本文从分析频道反向(CI)电力控制机制(CI)同时通过现有FLOA文献中广泛使用。我们的理论分析表明,虽然CIA在非攻击情况下能够取得良好的学习成绩,但它无法在防守能力有限的情况下对Byzantine攻击起作用。然后,我们提出了一个称为最佳努力投票(BEV)的权力控制政策与最强的梯级血统(SG)结合。我们BEV-SGD改进了频道的反向BILOA系统最强的趋一致的对比。我们改进了它们在BILOA 的预测中能率下分别的递增能率的递增能率。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
37+阅读 · 2019年12月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月14日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员