The effect of inaccuracies in the parameters of a dynamic Bayesian network can be investigated by subjecting the network to a sensitivity analysis. Having detailed the resulting sensitivity functions in our previous work, we now study the effect of parameter inaccuracies on a recommended decision in view of a threshold decision-making model. We detail the effect of varying a single and multiple parameters from a conditional probability table and present a computational procedure for establishing bounds between which assessments for these parameters can be varied without inducing a change in the recommended decision. We illustrate the various concepts involved by means of a real-life dynamic network in the field of infectious disease.
翻译:通过对网络进行敏感性分析,可以调查动态贝叶斯人网络参数不准确的影响。在详细介绍了先前工作中产生的敏感功能之后,我们现在研究参数不准确对一个建议决定的影响,并参照一个阈值决策模式。我们从一个有条件的概率表中详细说明一个不同的单一和多个参数的影响,并提出一个计算程序,以确定这些参数评估的界限,而不必改变所建议的决定。我们通过传染病领域一个现实生活动态网络,说明各种概念。