We study the Langevin dynamics of a physical system with manifold structure $\mathcal{M}\subset\mathbb{R}^p$ based on collected sample points $\{\mathsf{x}_i\}_{i=1}^n \subset \mathcal{M}$ that probe the unknown manifold $\mathcal{M}$. Through the diffusion map, we first learn the reaction coordinates $\{\mathsf{y}_i\}_{i=1}^n\subset \mathcal{N}$ corresponding to $\{\mathsf{x}_i\}_{i=1}^n$, where $\mathcal{N}$ is a manifold diffeomorphic to $\mathcal{M}$ and isometrically embedded in $\mathbb{R}^\ell$ with $\ell \ll p$. The induced Langevin dynamics on $\mathcal{N}$ in terms of the reaction coordinates captures the slow time scale dynamics such as conformational changes in biochemical reactions. To construct an efficient and stable approximation for the Langevin dynamics on $\mathcal{N}$, we leverage the corresponding Fokker-Planck equation on the manifold $\mathcal{N}$ in terms of the reaction coordinates $\mathsf{y}$. We propose an implementable, unconditionally stable, data-driven finite volume scheme for this Fokker-Planck equation, which automatically incorporates the manifold structure of $\mathcal{N}$. Furthermore, we provide a weighted $L^2$ convergence analysis of the finite volume scheme to the Fokker-Planck equation on $\mathcal{N}$. The proposed finite volume scheme leads to a Markov chain on $\{\mathsf{y}_i\}_{i=1}^n$ with an approximated transition probability and jump rate between the nearest neighbor points. After an unconditionally stable explicit time discretization, the data-driven finite volume scheme gives an approximated Markov process for the Langevin dynamics on $\mathcal{N}$ and the approximated Markov process enjoys detailed balance, ergodicity, and other good properties.


翻译:我们根据采集的样本点 $ @mathsf{M ⁇ subset\mathbr{m}R ⁇ p$,研究一个具有多元结构的物理系统的兰尼文动态 $mathcal{M} 。通过扩散地图,我们首先了解反应坐标 $mathsf{y}i=1}n\xxxxxxxxxmacal{N}美元对应的美元 maxlical=macration $, $\mascl=1\mascal{m} =1美元 countre specials, 美元马氏premodition=$mall=$masmacal=pilation $milational_modeal_modeal=xxxxxxxxxxcal_cal_cal_ial_ial_ical_ial_ial_i=1美元, mocial_mologyral_mologyal dal dal dal mologyal mologyal dal=xxxxxal modeal=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalal

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【ICML2018】63篇强化学习论文全解读
专知
7+阅读 · 2018年7月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月30日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【ICML2018】63篇强化学习论文全解读
专知
7+阅读 · 2018年7月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员