In this paper, we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations. Optimal error estimates in time and superconvergent error estimates in space are established without time-step dependent on the spatial mesh size. The key is to estimate directly the solution bounds in the $H^2$-norm for both the nonlinear wave equation and the corresponding fully discrete scheme, while the previous investigations rely on the temporal-spatial error splitting approach. Numerical examples are presented to confirm energy-conserving properties, unconditional convergence, and optimal error estimates, respectively, of the proposed fully discrete schemes.
翻译:在本文中,我们介绍并分析了一种解决非线性波方程式的节能和线性隐含计划。在时间上的最佳误差估计和空间超相一致的误差估计不取决于空间网目大小,而无需时间步骤。关键是直接估计非线性波方程式和相应的完全离散方案以$H$-norm为以内的解决办法界限,而以前的调查则依赖于时间空间差分法。提供了数字性的例子,以证实拟议的完全离散方案分别具有的节能特性、无条件趋同和最佳误差估计。