Intrinsic Image Decomposition is an open problem of generating the constituents of an image. Generating reflectance and shading from a single image is a challenging task specifically when there is no ground truth. There is a lack of unsupervised learning approaches for decomposing an image into reflectance and shading using a single image. We propose a neural network architecture capable of this decomposition using physics-based parameters derived from the image. Through experimental results, we show that (a) the proposed methodology outperforms the existing deep learning-based IID techniques and (b) the derived parameters improve the efficacy significantly. We conclude with a closer analysis of the results (numerical and example images) showing several avenues for improvement.
翻译:原始图像分解是生成图像成份的公开问题。 从单一图像中产生反射和阴影是一项具有挑战性的任务,在没有事实根据的情况下,具体地说是一项具有挑战性的任务。 缺乏将图像分解成反射和用单一图像遮蔽的不受监督的学习方法。 我们提出一个神经网络结构,能够利用从图像中得出的物理参数进行分解。 我们通过实验结果显示:(a) 拟议的方法优于现有的深层学习的ID技术,以及(b) 衍生的参数大大提高了效果。 我们最后对结果(数字图像和示例图像)进行更仔细的分析,展示出若干改进途径。