Users frequently interact with software systems through data entry forms. However, form filling is time-consuming and error-prone. Although several techniques have been proposed to auto-complete or pre-fill fields in the forms, they provide limited support to help users fill categorical fields, i.e., fields that require users to choose the right value among a large set of options. In this paper, we propose LAFF, a learning-based automated approach for filling categorical fields in data entry forms. LAFF first builds Bayesian Network models by learning field dependencies from a set of historical input instances, representing the values of the fields that have been filled in the past. To improve its learning ability, LAFF uses local modeling to effectively mine the local dependencies of fields in a cluster of input instances. During the form filling phase, LAFF uses such models to predict possible values of a target field, based on the values in the already-filled fields of the form and their dependencies; the predicted values (endorsed based on field dependencies and prediction confidence) are then provided to the end-user as a list of suggestions. We evaluated LAFF by assessing its effectiveness and efficiency in form filling on two datasets, one of them proprietary from the banking domain. Experimental results show that LAFF is able to provide accurate suggestions with a Mean Reciprocal Rank value above 0.73. Furthermore, LAFF is efficient, requiring at most 317 ms per suggestion.


翻译:用户经常通过数据输入表格与软件系统互动,但表格填充是耗费时间和容易出错的。虽然提出了多种技术,以自动完成或预填表格形式填充字段,但它们提供了有限的支持,帮助用户填入绝对字段,即需要用户在大量选项中选择正确价值的字段。在本文件中,我们提议采用学习型自动化方法,以填补数据输入表格中绝对字段的基于学习的自动方法。LAFF首先从一系列历史输入实例中学习贝叶西亚网络模型,以了解外地依赖性,代表过去填充的字段的价值。为提高其学习能力,LAFF利用当地模型,在一组输入实例中有效挖掘外地的当地依赖性。在形式填充阶段,LAFF利用这些模型,根据表格中已经填满的字段及其依赖性的价值预测目标字段的可能价值;然后向最终用户提供预测值(根据外地依赖性和预测信任性),以代表过去填充的字段价值。为了提高学习能力,LAFF利用本地模型有效地挖掘外地的实地价值,我们评估其准确性区域结构建议,以AFF的安全标准形式向最终用户展示。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员