项目名称: 稀土/过渡族离子共掺的新型发光玻璃陶瓷制备、显微结构调控与性能研究

项目编号: No.51202244

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 余运龙

作者单位: 中国科学院福建物质结构研究所

项目金额: 25万元

中文摘要: 不同激活离子间能量传递的控制与优化是发光材料研究的关键问题之一。作为发光中心的稀土与过渡族离子因其电子结构差异明显,难以在同一基质中同时显示优良的发光性能。本项目拟采用熔体急冷法及可控晶化处理,制备含氟化物与氧化物双纳米晶相的新型透明玻璃陶瓷,并实现共掺的稀土与过渡族离子选择性进入氟化物与氧化物晶相中,使得两种激活中心同时具有优异的发光性能。系统研究前驱玻璃组分与晶化条件对玻璃陶瓷中析出的两种纳米晶相的晶型、尺度、分布与晶化分数的影响;探明影响激活离子选择性进入特定晶相的关键因素,揭示激活离子的分布与相互间能量传递的关系;建立材料制备、显微结构与发光性能间的关联,通过进一步调控组分、结构,优化材料的发光性能。通过本项目的研究,为进一步研发具有能量传递控制特性、光谱可设计的新型发光材料奠定实验和理论基础。

中文关键词: 双晶化相;玻璃陶瓷;能量传递;多激活离子共掺;光学性能

英文摘要: The control and optimization of the energy transfer process between different active ions is one of the key problems to study the optical materials. Owing to the obviously distinct electronic structures of the rare earth ions (REI) and transition metal ions (TMI), it is difficult for them to simultaneously obtain excellent optical performance in the same matrix material. This project aims to prepare novel transparent glass ceramic (TGC) containing both fluoride and oxide nanocrystals by melt-quenching and subsequent heat-treatment, to realize the selectively partition of REI and TMI into the fluoride or oxide nanocrystals, and to simultaneously achieve excellent optical performance for these two active centers. The impact of the precursor glass compositions and the crystallization conditions on the crystal structure, size, distribution and crystallization fraction of these two types of precipitated nanocrystals are going to be carefully investigated. The key factors affecting the selectively partition of active ions into the specified crystal phases will be explored. The relationship between the distribution of active ions and their energy transfer will also be revealed. Based on the construction of the correlation between the preparation, microstructure and optical property of TGC, the optical performance of th

英文关键词: dual-phase;glass ceramic;energy transfer;multiple dopants;optical properties

成为VIP会员查看完整内容
0

相关内容

WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
19+阅读 · 2021年6月15日
小贴士
相关VIP内容
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
微信扫码咨询专知VIP会员