We control the probability of the uniform deviation between empirical and generalization performances of multi-category classifiers by an empirical L1 -norm covering number when these performances are defined on the basis of the truncated hinge loss function. The only assumption made on the functions implemented by multi-category classifiers is that they are of bounded variation (BV). For such classifiers, we derive the sample size estimate sufficient for the mentioned performances to be close with high probability. Particularly, we are interested in the dependency of this estimate on the number C of classes. To this end, first, we upper bound the scale-sensitive version of the VC-dimension, the fat-shattering dimension of sets of BV functions defined on R^d which gives a O(1/epsilon^d ) as the scale epsilon goes to zero. Secondly, we provide a sharper decomposition result for the fat-shattering dimension in terms of C, which for sets of BV functions gives an improvement from O(C^(d/2 +1)) to O(Cln^2(C)). This improvement then propagates to the sample complexity estimate.


翻译:我们通过经验L1-norm来控制多类分类者的经验性表现和一般性表现之间统一偏差的概率,这种偏差的概率是由经验L1-norm来控制,如果这些表现是根据短短的断链损失函数来定义的,那么这些表现的概率就会以经验L1-norm来控制。对多类分类者所执行的功能的唯一假设是,这些功能是受约束的变异(BV)。对于这种分类者,我们得出样本大小的估计数足以使上述性能接近高概率。特别是,我们关心这种估计对类别C数的依赖性。为此,我们首先将VC分流的体格敏感版本,即R ⁇ d上定义的BV函数的脂肪散变维维维度,随着Epslon的升至零而使O(1/epsilon)值降为O(1/epsilon)值。第二,我们为C的脂肪散变异度的特性提供了更锐的分结果,对于BV函数的组合从O(d/2+1)到O(C)到O(C)2(2(C))。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员