In this letter, we introduce Geometric Model Predictive Path Integral (GMPPI), a sampling-based controller capable of tracking agile trajectories while avoiding obstacles. In each iteration, GMPPI generates a large number of candidate rollout trajectories and then averages them to create a nominal control to be followed by the Unmanned Aerial Vehicle (UAV). We propose using geometric SE(3) control to generate part of the rollout trajectories, significantly increasing precision in agile flight. Furthermore, we introduce varying rollout simulation time step length and dynamic cost and noise parameters, vastly improving tracking performance of smooth and low-speed trajectories over an existing Model Predictive Path Integral (MPPI) implementation. Finally, we propose an integration of GMPPI with a stereo depth camera, enabling online obstacle avoidance at high speeds, a crucial step towards autonomous UAV flights in complex environments. The proposed controller can track simulated agile reference trajectories with position error similar to the geometric SE(3) controller. However, the same configuration of the proposed controller can avoid obstacles in a simulated forest environment at speeds of up to 13m/s, surpassing the performance of a state-of-the-art obstacle-aware planner. In real-world experiments, GMPPI retains the capability to track agile trajectories and avoids obstacles at speeds of up to 10m/s.
翻译:暂无翻译