Time-to-event semi-competing risk endpoints may be correlated when both events are occurring on the same individual. These events and the association between them may also be influenced by individual characteristics. In this paper, we propose copula survival models to estimate hazard ratios of covariates on the non-terminal and terminal events, along with the effects of covariates on the association between the two events. We use the Normal, Clayton, Frank and Gumbel copulas to provide a variety of association structures between the non-terminal and terminal events. We apply the proposed methods to model semi-competing risks of graft failure and death for kidney transplant patients. We find that copula survival models perform better than the Cox proportional hazards model when estimating the non-terminal event hazard ratio of covariates. We also find that the inclusion of covariates in the association parameter of the copula models improves the estimation of the hazard ratios.
翻译:时间至事件的半竞争风险终点可能存在相关性,尤其是在同一被试上出现两种事件时。这些事件及其之间的关联可能也受到个体特征的影响。在本文中,我们提出了用于估计协变量对非终点事件和终点事件的风险率以及协变量对两个事件之间关联影响的联合分布生存模型。我们使用正态、Clayton、Frank和Gumbel copulas提供非终点事件和终点事件之间各种关联结构。我们将提出的方法应用于肾移植患者移植失败和死亡的半竞争风险模型。我们发现,在估计协变量的非终点事件风险比时,Copula生存模型比Cox比例危险模型表现更好。我们还发现,在协变量中包含关联参数的情况下,Copula模型的性能提高了风险比的估计。