Many point-based 3D detectors adopt point-feature sampling strategies to drop some points for efficient inference. These strategies are typically based on fixed and handcrafted rules, making difficult to handle complicated scenes. Different from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features, and assign the feature transform with suitable receptive field for each selected point. It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost. Extensive experiments demonstrate that our method can reduce latency by 30%-60% on KITTI and Waymo datasets. Specifically, the inference speed of our detector can reach 162 FPS and 30 FPS with negligible performance degradation on KITTI and Waymo datasets, respectively.
翻译:许多基于点的三维探测器采用点性能取样策略,为有效推断而降低一些点数。 这些策略通常基于固定和手工设计的规则, 难以处理复杂的场景。 我们提议建立一个动态球查询( DBQ) 网络, 根据输入特征适应性地选择一组输入点, 并为每个选定点指定功能变换, 并配有合适的可接收场。 它可以嵌入一些最先进的三维探测器, 并以端到端的方式进行培训, 从而大大降低计算成本。 广泛的实验表明, 我们的方法可以将KITTI和Waymo数据集的耐用率降低30%至60%。 具体地说, 我们探测器的推导速度可以分别达到162个FPS和30个FPS, 其性能可忽略不小地降解于KITTI和Waymo数据集。