Virtualized Radio Access Network (vRAN) brings agility to Next-Generation RAN through functional split. It allows decomposing the base station (BS) functions into virtualized components and hosts it either at the distributed-unit (DU) or central-unit (CU). However, deciding which functions to deploy at DU or CU to minimize the total network cost is challenging. In this paper, a constrained deep reinforcement based functional split optimization (CDRS) is proposed to optimize the locations of functions in vRAN. Our formulation results in a combinatorial and NP-hard problem for which finding the exact solution is computationally expensive. Hence, in our proposed approach, a policy gradient method with Lagrangian relaxation is applied that uses a penalty signal to lead the policy toward constraint satisfaction. It utilizes a neural network architecture formed by an encoder-decoder sequence-to-sequence model based on stacked Long Short-term Memory (LSTM) networks to approximate the policy. Greedy decoding and temperature sampling methods are also leveraged for a search strategy to infer the best solution among candidates from multiple trained models that help to avoid a severe suboptimality. Simulations are performed to evaluate the performance of the proposed solution in both synthetic and real network datasets. Our findings reveal that CDRS successfully learns the optimal decision, solves the problem with the accuracy of 0.05\% optimality gap and becomes the most cost-effective compared to the available RAN setups. Moreover, altering the routing cost and traffic load does not significantly degrade the optimality. The results also show that all of our CDRS settings have faster computational time than the optimal baseline solver. Our proposed method fills the gap of optimizing the functional split offering a near-optimal solution, faster computational time and minimal hand-engineering.


翻译:虚拟电台接入网络(vRAN) 通过功能分割,为下Generation RAN 带来灵活性。 它允许将基站功能分解成虚拟化组件,并将基站功能分解成虚拟化组件,并将基站功能分解到分布式单元(DU)或中央单元(CU)。 但是,决定在DU或CU中部署哪些功能以最大限度地降低网络总成本是具有挑战性的。 在本文中, 提议基于功能分解优化功能优化(CDRS), 以优化 vRAN 中的功能位置。 我们的组合式和 NP- 硬性问题的配置结果, 找到精确的解决方案是接近于成本的。 因此, 在我们的拟议方法中,使用拉格拉格(Lagranchian)松松松松松松松松放松的政策梯度方法, 使用一个惩罚信号引导政策达到约束性满意度。 它使用一个由电解码- 解码序列到序列模型中形成的神经网络结构模型, 也大大地展示了我们所提议的最佳解决方案。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员