Whether the 3D incompressible Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the incompressible axisymmetric Navier-Stokes equations with smooth initial data of finite energy seem to develop potentially singular behavior at the origin. This potentially singular behavior is induced by a potential finite time singularity of the 3D Euler equations that we reported in the companion paper (arXiv:2107.05870). We present numerical evidence that the 3D Navier--Stokes equations develop nearly self-similar singular scaling properties with maximum vorticity increased by a factor of 10^7. We have applied several blow-up criteria to study the potentially singular behavior of the Navier--Stokes equations. The Beale-Kato-Majda blow-up criterion and the blow-up criteria based on the growth of enstrophy and negative pressure seem to imply that the Navier--Stokes equations using our initial data develop a potential finite time singularity. We have also examined the Ladyzhenskaya-Prodi-Serrin regularity criteria. Our numerical results for the cases of (p,q) = (4,8), (6,4), (9,3) and (p,q)=(\infty,2) provide strong evidence for the potentially singular behavior of the Navier--Stokes equations. Our numerical study shows that while the global L^3 norm of the velocity grows very slowly, the localized version of the L^3 norm of the velocity experiences rapid dynamic growth relative to the localized L^3 norm of the initial velocity. This provides further evidence for the potentially singular behavior of the NavieStokes equations.
翻译:3D 缩略式 Navier- Stokes 方程式能否从平滑初始数据中得出一个有限时间奇数,这是非线性 PDE 中最具挑战性的问题之一。 在本文中,我们提出了一些新的数字证据,证明不压缩轴轴式Navier-Stokes 方程式,加上平滑的有限能量初始数据,似乎在源头发展出潜在的奇特行为。这种潜在奇特行为是由我们在其配套文件(arXiv:2107.058070)中报告的 3D Euler 方程式潜在的有限时间奇数(arXitiv:2107.5870) 引起的。我们提供数字性直径-Stoke-Stokes 方程式开发了几乎自相近的奇特特缩缩缩缩缩缩缩式属性,我们最初数据也使用了定期的Ltock-Stors 标准。 Beale-kato-Majda 振动标准以及基于恒度增长和负压力增长的振动标准,我们最初的惯性- Stal- Stal- dal- dal- dal- dal- dal-sal- deval- disal- disal disal disal 提供了我们开始数据分析的Sildal- dismal-sal-sal-s 的直观的直立的直立的直观, 和Slational- dismal- dismal- dismal-dal- dismal-dal-dal-dal-dal-dal-dal-dal-dal-dal-d-dal-d-dal-dal-dal-dal-dal-dal-d-d-d-d-d-sal-sal-d-dal-dal-dal-dal-dal-dal-d-d-saldaldal-sal-sal-sal-sal-sal-dal-dal-l-dal-sal-sal-sal-sal-sal-sal-ld-sal-ld-ld-d-d-d-d-ld-