We give the first {\sl reconstruction algorithm} for decision trees: given queries to a function $f$ that is $\mathrm{opt}$-close to a size-$s$ decision tree, our algorithm provides query access to a decision tree $T$ where: $\circ$ $T$ has size $S = s^{O((\log s)^2/\varepsilon^3)}$; $\circ$ $\mathrm{dist}(f,T)\le O(\mathrm{opt})+\varepsilon$; $\circ$ Every query to $T$ is answered with $\mathrm{poly}((\log s)/\varepsilon)\cdot \log n$ queries to $f$ and in $\mathrm{poly}((\log s)/\varepsilon)\cdot n\log n$ time. This yields a {\sl tolerant tester} that distinguishes functions that are close to size-$s$ decision trees from those that are far from size-$S$ decision trees. The polylogarithmic dependence on $s$ in the efficiency of our tester is exponentially smaller than that of existing testers. Since decision tree complexity is well known to be related to numerous other boolean function properties, our results also provide a new algorithms for reconstructing and testing these properties.
翻译:我们给决策树提供第一个 ~ sl 重建算法} : 给一个函数查询$f$, 即$\ mathrm{ opt} $- 接近一个大小- 美元决策树 $T$, 我们的算法为决定树提供查询权限 $T$, 其中 $\ circ$ = s $O (( log s) \ 2/\ varepsilon3}} $; $ cic$ $\ mathr{ m{ dist} (f, T)\ le O( mathr{ { opt}) ⁇ varepsilon $; $ $ $, 每份查询一个大小- t$ 的属性, 以 $ 美元 回答一个决定树的查询权限 $ : $ more- developrial 。