Nested sampling is an important tool for conducting Bayesian analysis in Astronomy and other fields, both for sampling complicated posterior distributions for parameter inference, and for computing marginal likelihoods for model comparison. One technical obstacle to using nested sampling in practice is the requirement (for most common implementations) that prior distributions be provided in the form of transformations from the unit hyper-cube to the target prior density. For many applications - particularly when using the posterior from one experiment as the prior for another - such a transformation is not readily available. In this letter we show that parametric bijectors trained on samples from a desired prior density provide a general-purpose method for constructing transformations from the uniform base density to a target prior, enabling the practical use of nested sampling under arbitrary priors. We demonstrate the use of trained bijectors in conjunction with nested sampling on a number of examples from cosmology.
翻译:近距离取样是进行天文学和其他领域巴伊西亚分析的一个重要工具,既用于对参数推导的复杂后部分布进行取样,也用于计算模型比较的边际可能性。实际使用嵌套取样的一个技术障碍是(最常见的实施方式是)要求先以单位超立方体转换为目标前密度的形式提供先前的分布。对于许多应用,特别是使用一个实验的后部作为另一个实验的后部时,这种转换并非现成。我们在信中表明,从理想的先前密度样本中经过培训的参数比对器提供了一种通用方法,用于从统一基密度到目标前的构造转换,使得在任意的先前情况下能够实际使用嵌套式取样。我们用经过训练的双向导体与嵌套式采样结合使用了一些宇宙学的例子。