The $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-additive codes are subgroups of $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2} \times \cdots \times \mathbb{Z}_{p^s}^{\alpha_s}$, and can be seen as linear codes over $\mathbb{Z}_p$ when $\alpha_i=0$ for all $i \in \{2,3,\dots, s\}$, a $\mathbb{Z}_{p^s}$-additive code when $\alpha_i=0$ for all $i \in \{1,2,\dots, s-1\}$ , or a $\mathbb{Z}_p\mathbb{Z}_{p^2}$-additive code when $s=2$, %$\alpha_i=0$ for all $i \in \{3,4,\dots, s\}$, or $\mathbb{Z}_2\mathbb{Z}_4$-additive codes when $p=2$ and $s=2$. A $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear generalized Hadamard (GH) code is a GH code over $\mathbb{Z}_p$ which is the Gray map image of a $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-additive code. In this paper, we generalize some known results for $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear GH codes with $p$ prime and $s\geq 2$. First, we give a recursive construction of $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots \mathbb{Z}_{p^s}$-additive GH codes of type $(\alpha_1,\dots,\alpha_s;t_1,\dots,t_s)$ with $t_1\geq 1, t_2,\dots,t_{s-1}\geq 0$ and $t_s\geq1$. Then, we show for which types the corresponding $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear GH codes are nonlinear over $\mathbb{Z}_p$. We also compute the kernel and its dimension whenever they are nonlinear.
翻译:$\mathb\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以被看成直线代码 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以可以可以可以可以可以可以可以可以可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\