For a subset $B$ of $\mathbb{R}$, denote by $\operatorname{U}(B)$ be the semiring of (univariate) polynomials in $\mathbb{R}[X]$ that are strictly positive on $B$. Let $\mathbb{N}[X]$ be the semiring of (univariate) polynomials with non-negative integer coefficients. We study solutions of homogeneous linear equations over the polynomial semirings $\operatorname{U}(B)$ and $\mathbb{N}[X]$. In particular, we prove local-global principles for solving single homogeneous linear equations over these semirings. We then show PTIME decidability of determining the existence of non-zero solutions over $\mathbb{N}[X]$ of single homogeneous linear equations. Our study of these polynomial semirings is largely motivated by several semigroup algorithmic problems in the wreath product $\mathbb{Z} \wr \mathbb{Z}$. As an application of our results, we show that the Identity Problem (whether a given semigroup contains the neutral element?) and the Group Problem (whether a given semigroup is a group?) for finitely generated sub-semigroups of the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is decidable when elements of the semigroup generator have the form $(y, \pm 1)$.
翻译:对于 $mathb{N} [X] 的子子集 $B$, 用 $\ operatorname{U} (B) 表示 $\ operatorname{U} (B) 美元是美元( mathb{R} [X) 美元绝对正数的多式的半数。 $( mathbb{N} [X] 美元是非负数( 单数) 多式的半数的半数的半数。 我们研究多元半数半数方程的解决方案, $( B) $( B) $( ) 美元和$( mathb{{N) 美元[X] 。 特别是,我们证明解决单一单一单一单一线性线性方的本地- 全球原则, 美元对美元。 我们然后显示 PTIME 在 $( mathb{N} [X] 单数的单数单数线性方方程式的半数。 我们对这些多式半数的研究, 主要是由以下几个半组的半数算算算算问题 问题 $ (ma\\\\\\\\\\\\) roqroum ro) roma) ro) 显示一个给的正数组的正数组的正数。