The emerging field semantic communication is driving the research of end-to-end data transmission. By utilizing the powerful representation ability of deep learning models, learned data transmission schemes have exhibited superior performance than the established source and channel coding methods. While, so far, research efforts mainly concentrated on architecture and model improvements toward a static target domain. Despite their successes, such learned models are still suboptimal due to the limitations in model capacity and imperfect optimization and generalization, particularly when the testing data distribution or channel response is different from that adopted for model training, as is likely to be the case in real-world. To tackle this, we propose a novel online learned joint source and channel coding approach that leverages the deep learning model's overfitting property. Specifically, we update the off-the-shelf pre-trained models after deployment in a lightweight online fashion to adapt to the distribution shifts in source data and environment domain. We take the overfitting concept to the extreme, proposing a series of implementation-friendly methods to adapt the codec model or representations to an individual data or channel state instance, which can further lead to substantial gains in terms of the bandwidth ratio-distortion performance. The proposed methods enable the communication-efficient adaptation for all parameters in the network without sacrificing decoding speed. Our experiments, including user study, on continually changing target source data and wireless channel environments, demonstrate the effectiveness and efficiency of our approach, on which we outperform existing state-of-the-art engineered transmission scheme (VVC combined with 5G LDPC coded transmission).


翻译:摘要:新兴领域语义通信正在推动端到端数据传输的研究。通过利用深度学习模型强大的表征能力,学习的数据传输方案已经表现出了比传统的源和信道编码方法更高的性能。然而,到目前为止,研究工作主要集中在针对静态目标领域的架构和模型改进上。虽然这些学习的模型已经取得了成功,但由于模型容量的限制,以及不完美的优化和泛化,尤其是在测试数据分布或信道响应与模型训练时不同的情况下,这些学习的模型仍然不够优化。为解决这个问题,我们提出了一种新颖的在线学习的联合源和信道编码方法,利用深度学习模型的过度拟合性质。具体而言,我们在部署后以轻量级的在线方式更新预训练模型,以适应源数据和环境域的分布变化。我们极端地使用过度拟合的概念,提出一系列实现友好的方法来使编解码器模型或表征适应单个数据或信道状态实例,这可以进一步在带宽比-失真性能方面获得实质性的收益。所提出的方法能够在不牺牲解码速度的情况下对网络中的所有参数进行通信效率调整。我们的实验包括用户研究,针对不断变化的目标源数据和无线信道环境,证明了我们的方法的有效性和效率,在这方面我们优于现有最先进的工程传输方案(VVC与5G LDPC编码传输相结合)。

0
下载
关闭预览

相关内容

深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员