Late visions and trends for the future sixth Generation (6G) of wireless communications advocate, among other technologies, towards the deployment of network nodes with extreme numbers of antennas and up to terahertz frequencies, as means to enable various immersive applications. However, these technologies impose several challenges in the design of radio-frequency front-ends and beamforming architectures, as well as of ultra-wideband waveforms and computationally efficient transceiver signal processing. In this article, we revisit the Time Reversal (TR) technique, which was initially experimented in acoustics, in the context of large-bandwidth 6G wireless communications, capitalizing on its high resolution spatiotemporal focusing realized with low complexity transceivers. We first overview representative state-of-the-art in TR-based wireless communications, identifying the key competencies and requirements of TR for efficient operation. Recent and novel experimental setups and results for the spatiotemporal focusing capability of TR at the carrier frequencies $2.5$, $36$, and $273$ GHz are then presented, demonstrating in quantitative ways the technique's effectiveness in these very different frequency bands, as well as the roles of the available bandwidth and the number of transmit antennas. We also showcase the TR potential for realizing low complexity multi-user communications. The opportunities arising from TR-based wireless communications as well as the challenges for finding their place in 6G networks, also in conjunction with other complementary candidate technologies, are highlighted.
翻译:未来第六代(6G)无线通信倡导者的晚期愿景和趋势,除其他技术外,还包括将无线通信倡导者(6G)的晚期愿景和趋势用于部署具有极端数量天线的网络节点和极低频频率的网络节点,作为实现各种隐蔽应用的手段;然而,这些技术在设计无线电频率前端和波形成形结构以及超广频波形和计算高效收发器信号处理方面,以及在设计超大频波形波形和超广频波形和超高效收发信机信号处理方面,带来了若干挑战;在本篇文章中,我们重新审视了时间Reveral技术(TR)技术,该技术最初在音频6G无线通信中进行了试验,其高分辨率补充波段即时空,以低复杂收发器为重点。我们首先概述了TR无线通信中的代表性,确定了TR系统的关键能力和要求。