Communications are realized as a result of successive decisions at the physical layer, from modulation selection to multi-antenna strategy, and each decision affects the performance of the communication systems. Future communication systems must include extensive capabilities as they will encompass a wide variety of devices and applications. Conventional physical layer decision mechanisms may not meet these requirements, as they are often based on impractical and oversimplifying assumptions that result in a trade-off between complexity and efficiency. By leveraging past experiences, learning-driven designs are promising solutions to present a resilient decision mechanism and enable rapid response even under exceptional circumstances. The corresponding design solutions should evolve following the lines of learning-driven paradigms that offer more autonomy and robustness. This evolution must take place by considering the facts of real-world systems and without restraining assumptions. In this paper, the common assumptions in the physical layer are presented to highlight their discrepancies with practical systems. As a solution, learning algorithms are examined by considering the implementation steps and challenges. Furthermore, these issues are discussed through a real-time case study using software-defined radio nodes to demonstrate the potential performance improvement. A cyber-physical framework is presented to incorporate future remedies.


翻译:由于在物理层从调制选择到多屏障战略的连续决定,通信之所以能够实现,每个决定都影响到通信系统的绩效。未来的通信系统必须包含广泛的能力,因为它们将包含各种各样的装置和应用。常规的物理层决定机制可能无法满足这些要求,因为它们往往基于不切实际和过于简化的假设,从而导致复杂性和效率之间的权衡。通过利用过去的经验,学习驱动的设计是提出一个弹性决定机制的有希望的解决办法,即使在例外情况下也能迅速作出反应。相应的设计解决方案应当按照学习驱动的范式发展,提供更大的自主性和稳健性。这种演变必须通过考虑现实世界系统的事实和不设限的假设来进行。本文介绍了物理层的共同假设,以突出其与实际系统的差异。作为一种解决办法,通过考虑实施步骤和挑战来审查学习算法。此外,通过使用软件定义的无线电节点进行实时案例研究来讨论这些问题,以展示潜在的绩效改进。一个网络物理框架将纳入未来的补救措施。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convergence of the number of period sets in strings
Arxiv
0+阅读 · 2022年9月28日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员