To proactively navigate and traverse various terrains, active use of visual perception becomes indispensable. We aim to investigate the feasibility and performance of using sparse visual observations to achieve perceptual locomotion over a range of common terrains (steps, ramps, gaps, and stairs) in human-centered environments. We formulate a selection of sparse visual inputs suitable for locomotion over the terrains of interest, and propose a learning framework to integrate exteroceptive and proprioceptive states. We specifically design the state observations and a training curriculum to learn feedback control policies effectively over a range of different terrains. We extensively validate and benchmark the learned policy in various tasks: omnidirectional walking on flat ground, and forward locomotion over various obstacles, showing high success rate of traversability. Furthermore, we study exteroceptive ablations and evaluate policy generalization by adding various levels of noise and testing on new unseen terrains. We demonstrate the capabilities of autonomous perceptual locomotion that can be achieved by only using sparse visual observations from direct depth measurements, which are easily available from a Lidar or RGB-D sensor, showing robust ascent and descent over high stairs of 20 cm height, i.e., 50% leg length, and robustness against noise and unseen terrains.
翻译:为了积极主动地导航和穿越各种地形,积极使用视觉感知是不可或缺的。我们的目标是调查在以人为中心的环境中利用稀少的视觉观察在一系列常见地形(坡道、坡道、空隙和楼梯)上实现感知性移动的可行性和性能。我们设计了适合在感兴趣地形上移动的零散视觉输入物的选择,并提议了一个学习框架,以整合外观感性和自主感性状态。我们特别设计了国家观测和培训课程,以有效学习不同地形的反馈控制政策。我们广泛验证和衡量各种任务中学到的政策:在平地上全方向行走和在各种障碍上前向前移动,显示高度成功率很高。此外,我们研究外观感性疏通度并评估政策总体情况,在新的隐蔽地形上增加不同程度的噪音和测试。我们展示了自觉感知感知感知感知感的能力,只有利用直接深度测量的微视觉观测才能实现这种能力,直接深度测量很容易从利达尔或RGB-D传感器获得,在高纬度、摄氏50度的高度和高阶上显示稳健健健健健的高度和高楼阶,从20英尺和高楼层获得。