Quantum computers have been proposed as a solution for efficiently solving non-linear differential equations (DEs), a fundamental task across diverse technological and scientific domains. However, a crucial milestone in this regard is to design protocols that are hardware-aware, making efficient use of limited available quantum resources. We focus here on promising variational methods derived from scientific machine learning: differentiable quantum circuits (DQC), addressing specifically their cost in number of circuit evaluations. Reducing the number of quantum circuit evaluations is particularly valuable in hybrid quantum/classical protocols, where the time required to interface and run quantum hardware at each cycle can impact the total wall-time much more than relatively inexpensive classical post-processing overhead. Here, we propose and test two sample-efficient protocols for solving non-linear DEs, achieving exponential savings in quantum circuit evaluations. These protocols are based on redesigning the extraction of information from DQC in a ``measure-first" approach, by introducing engineered cost operators similar to the randomized-measurement toolbox (i.e. classical shadows). In benchmark simulations on one and two-dimensional DEs, we report up to $\sim$ 100 fold reductions in circuit evaluations. Our protocols thus hold the promise to unlock larger and more challenging non-linear differential equation demonstrations with existing quantum hardware.
翻译:暂无翻译