Autonomous navigation of mobile robots is an essential task for various industries. Sensor data is crucial to ensure safe and reliable navigation. However, sensor observations are often limited by different factors. Imagination can assist to enhance the view and aid navigation in dangerous or unknown situations where only limited sensor observation is available. In this paper, we propose an imagination-enhanced navigation based on 2D semantic laser scan data. The system contains an imagination module, which can predict the entire occupied area of the object. The imagination module is trained in a supervised manner using a collected training dataset from a 2D simulator. Four different imagination models are trained, and the imagination results are evaluated. Subsequently, the imagination results are integrated into the local and global cost map to benefit the navigation procedure. The approach is validated on three different test maps, with seven different paths for each map. The quality and numeric results showed that the agent with the imagination module could generate more reliable paths without passing beneath the object, with the cost of a longer path and slower velocity.
翻译:移动机器人的自动导航是各行业的一项基本任务。 传感器数据对于确保安全可靠的导航至关重要。 但是, 传感器观测往往受到不同因素的限制。 想象力可以帮助在只有有限的传感器观测的危险性或未知情况下加强视图和辅助导航。 在本文中, 我们提议基于 2D 语义激光扫描数据进行想象力强化导航。 系统包含一个想象力模块, 可以预测物体的整个占用区。 想象力模块是使用从 2D 模拟器收集的培训数据集以监督方式培训的。 四种不同的想象力模型得到了培训, 想象力结果也得到了评估。 随后, 想象力结果被纳入了本地和全球成本图中, 以有利于导航程序。 这种方法在三种不同的测试地图上验证, 每张有七条不同的路径。 质量和数字结果显示, 想象力模块的代理器可以在不经过物体下方的情况下生成更可靠的路径。 成本是更长的路径和速度更慢。