We propose DeepIPC, an end-to-end multi-task model that handles both perception and control tasks in driving a mobile robot autonomously. The model consists of two main parts, perception and controller modules. The perception module takes RGB image and depth map to perform semantic segmentation and bird's eye view (BEV) semantic mapping along with providing their encoded features. Meanwhile, the controller module processes these features with the measurement of GNSS locations and angular speed to estimate waypoints that come with latent features. Then, two different agents are used to translate waypoints and latent features into a set of navigational controls to drive the robot. The model is evaluated by predicting driving records and performing automated driving under various conditions in the real environment. Based on the experimental results, DeepIPC achieves the best drivability and multi-task performance even with fewer parameters compared to the other models.
翻译:我们建议使用一个端到端的多任务模型DeepIPC(DeepIPC),该模型既处理自动驾驶移动机器人的感知和控制任务,又由两个主要部件、感知和控制模块组成。感知模块使用 RGB 图像和深度地图来进行语义分解和鸟类眼视(BEV)语义图绘制,同时提供其编码特征。与此同时,控制模块处理这些特征,测量全球导航卫星系统的位置,并用角速度来估计带有潜伏特征的路径点。然后,使用两个不同的代理器将路标和潜在特征转换成一套导航控制系统,以驱动机器人。该模型通过预测驾驶记录和在真实环境中的各种条件下进行自动驾驶来进行评估。根据实验结果,DeepIPC取得了最佳的机能和多任务性能,即使与其他模型相比参数更少。