Logical Neural Networks (LNNs) are a type of architecture which combine a neural network's abilities to learn and systems of formal logic's abilities to perform symbolic reasoning. LLNs provide programmers the ability to implicitly modify the underlying structure of the neural network via logical formulae. In this paper, we take advantage of this abstraction to extend LNNs to support equality and function symbols via first-order theories. This extension improves the power of LNNs by significantly increasing the types of problems they can tackle. As a proof of concept, we add support for the first-order theory of equality to IBM's LNN library and demonstrate how the introduction of this allows the LNN library to now reason about expressions without needing to make the unique-names assumption.
翻译:逻辑神经网络(LNNs)是一种将神经网络的学习能力和正式逻辑系统进行象征性推理的能力结合起来的结构。 LLNs为程序员提供了通过逻辑公式暗中修改神经网络基本结构的能力。在本文中,我们利用这一抽象概念扩展LNNs,通过一阶理论支持平等和功能符号。这一扩展通过大大增加他们能够处理的问题类型来提高LNS的力量。作为概念的证明,我们向IBM的LNN图书馆添加了对第一阶平等理论的支持,并展示了引入这一理论如何使LNN图书馆现在能够解释表达方式,而无需作出独特名称的假设。