Integrating Internet of Things (IoT) technology inside the cold supply chain can enhance transparency, efficiency, and quality, optimizing operating procedures and increasing productivity. The integration of IoT in this complicated setting is hindered by specific barriers that need a thorough examination. Prominent barriers to IoT implementation in the cold supply chain are identified using a two-stage model. After reviewing the available literature on the topic of IoT implementation, a total of 13 barriers were found. The survey data was cross-validated for quality, and Cronbach's alpha test was employed to ensure validity. This research applies the interpretative structural modeling technique in the first phase to identify the main barriers. Among those barriers, "regularity compliance" and "cold chain networks" are key drivers for IoT adoption strategies. MICMAC's driving and dependence power element categorization helps evaluate the barrier interactions. In the second phase of this research, a decision-making trial and evaluation laboratory methodology was employed to identify causal relationships between barriers and evaluate them according to their relative importance. Each cause is a potential drive, and if its efficiency can be enhanced, the system as a whole benefits. The research findings provide industry stakeholders, governments, and organizations with significant drivers of IoT adoption to overcome these barriers and optimize the utilization of IoT technology to improve the effectiveness and reliability of the cold supply chain.
翻译:暂无翻译