Over the past decade, a long line of research has investigated the distributed complexity landscape of locally checkable labeling (LCL) problems on bounded-degree graphs, culminating in an almost-complete classification on general graphs and a complete classification on trees. The latter states that, on bounded-degree trees, any LCL problem has deterministic \emph{worst-case} time complexity $O(1)$, $\Theta(\log^* n)$, $\Theta(\log n)$, or $\Theta(n^{1/k})$ for some positive integer $k$, and all of those complexity classes are nonempty. Moreover, randomness helps only for (some) problems with deterministic worst-case complexity $\Theta(\log n)$, and if randomness helps (asymptotically), then it helps exponentially. In this work, we study how many distributed rounds are needed \emph{on average per node} in order to solve an LCL problem on trees. We obtain a partial classification of the deterministic \emph{node-averaged} complexity landscape for LCL problems. As our main result, we show that every problem with worst-case round complexity $O(\log n)$ has deterministic node-averaged complexity $O(\log^* n)$. We further establish bounds on the node-averaged complexity of problems with worst-case complexity $\Theta(n^{1/k})$: we show that all these problems have node-averaged complexity $\widetilde{\Omega}(n^{1 / (2^k - 1)})$, and that this lower bound is tight for some problems.
翻译:暂无翻译