In Bayesian quantile regression, the most commonly used likelihood is the asymmetric Laplace (AL) likelihood. The reason for this choice is not that it is a plausible data-generating model but that the corresponding maximum likelihood estimator is identical to the classical estimator by Koenker and Bassett (1978), and in that sense, the AL likelihood can be thought of as a working likelihood. AL-based quantile regression has been shown to produce good finite-sample Bayesian point estimates and to be consistent. However, if the AL distribution does not correspond to the data-generating distribution, credible intervals based on posterior standard deviations can have poor coverage. Yang, Wang, and He (2016) proposed an adjustment to the posterior covariance matrix that produces asymptotically valid intervals. However, we show that this adjustment is sensitive to the choice of scale parameter for the AL likelihood and can lead to poor coverage when the sample size is small to moderate. We therefore propose using Infinitesimal Jackknife (IJ) standard errors (Giordano & Broderick, 2023). These standard errors do not require resampling but can be obtained from a single MCMC run. We also propose a version of IJ standard errors for clustered data. Simulations and applications to real data show that the IJ standard errors have good frequentist properties, both for independent and clustered data. We provide an R-package, IJSE, that computes IJ standard errors for clustered or independent data after estimation with the brms wrapper in R for Stan.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月5日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员