Anomalous sound detection systems must detect unknown, atypical sounds using only normal audio data. Conventional methods use the serial method, a combination of outlier exposure (OE), which classifies normal and pseudo-anomalous data and obtains embedding, and inlier modeling (IM), which models the probability distribution of the embedding. Although the serial method shows high performance due to the powerful feature extraction of OE and the robustness of IM, OE still has a problem that doesn't work well when the normal and pseudo-anomalous data are too similar or too different. To explicitly distinguish these data, the proposed method uses multi-task learning of two binary cross-entropies when training OE. The first is a loss that classifies the sound of the target machine to which product it is emitted from, which deals with the case where the normal data and the pseudo-anomalous data are too similar. The second is a loss that identifies whether the sound is emitted from the target machine or not, which deals with the case where the normal data and the pseudo-anomalous data are too different. We perform our experiments with DCASE 2021 Task~2 dataset. Our proposed single-model method outperforms the top-ranked method, which combines multiple models, by 2.1% in AUC.


翻译:异常声音探测系统必须只使用正常的音频数据来探测未知的、非典型的声音。 常规方法使用序列方法, 外向接触( OE) 的组合, 将正常和假的跨热带物种分类, 并获得嵌入, 和 内嵌的模型( IM), 用来模拟嵌入的概率分布。 虽然序列方法显示由于 OE 的强力特性提取和 IM 的坚固性, 其性能很高, 但 OE 仍然有一个问题, 当正常和假的假的这些数据太相类似或太不同时, 它仍然不起作用。 为了明确区分这些数据, 提议的方法在培训 OE 时, 使用多功能性接触两种二进制交叉物种( OE) 的组合。 第一种是损失, 将它所排放的产品的目标机器的音响分类, 它处理正常数据和伪相像的数据太相似的情况。 第二一种是损失, 确定声音是否从目标机器或假的机器发出, 它处理正常的数据和假的假的反基因数据太不同的情况。 我们用了多种模式进行实验, 我们的A- brod AS- group a smex 样的模型组合了一种2021 ASy supd 样的模型, 一种方法, ASypald dex addddd a

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员