We investigate the approximation formulas that were proposed by Tanaka & Sugihara (2019), in weighted Hardy spaces, which are analytic function spaces with certain asymptotic decay. Under the criterion of minimum worst error of $n$-point approximation formulas, we demonstrate that the formulas are nearly optimal. We also obtain the upper bounds of the approximation errors that coincide with the existing heuristic bounds in asymptotic order by duality theorem for the minimization problem of potential energy.
翻译:我们调查了Tanaka & Sugihara(2019年)在加权硬体空间中建议的近似公式,这些空间是具有某些无药性衰减作用的分析功能空间。根据最低最差差差(美元点近似公式)的标准,我们证明这些公式几乎是最佳的。 我们还通过潜在能量最小化的双重理论获得了与无药性现有超值界限一致的近似错误的上限。