We propose a Spiking Neural Network (SNN)-based explicit numerical scheme for long time integration of time-dependent Ordinary and Partial Differential Equations (ODEs, PDEs). The core element of the method is a SNN, trained to use spike-encoded information about the solution at previous timesteps to predict spike-encoded information at the next timestep. After the network has been trained, it operates as an explicit numerical scheme that can be used to compute the solution at future timesteps, given a spike-encoded initial condition. A decoder is used to transform the evolved spiking-encoded solution back to function values. We present results from numerical experiments of using the proposed method for ODEs and PDEs of varying complexity.
翻译:我们提出了一个基于Spiking NealNetwork(SNN)的清晰数字方案,用于长期整合基于时间的普通和部分差异方程式(ODEs,PDEs)。该方法的核心要素是 SNN, 其核心要素是在前几个时间步骤中培训使用关于解决方案的峰值编码信息,以预测下一个时间步骤的峰值编码信息。在对网络进行了培训之后, 它作为一个明确的数字方案运行, 可用于在未来时间步骤中计算解决方案, 并基于一个钉钉编码初始条件。 使用解码器将进化的 Spiking- encodcoded 解决方案转换为功能值。 我们介绍了在使用拟议方法对复杂程度不一的 ODEs 和 PDEs 进行的数字实验的结果 。