We study the computability of global solutions to linear Schr\"odinger equations with magnetic fields and the Hartree equation on $\mathbb R^3$. We show that the solution can always be globally computed with error control on the entire space if there exist a priori decay estimates in generalized Sobolev norms on the initial state. Using weighted Sobolev norm estimates, we show that the solution can be computed with uniform computational runtime with respect to initial states and potentials. We finally study applications in optimal control theory and provide numerical examples.
翻译:我们研究了线性Schr\'odinger等式与磁场和Hartree等式的全球性解决办法的可乘性,以$\mathbb R $3美元计算。我们表明,如果在最初状态上普遍索博廖夫标准中存在先验衰变估计,那么该解决办法总可以用整个空间的错误控制来进行全球计算。我们使用加权的索博廖夫标准估计,表明该解决办法可以用与初始状态和潜力有关的统一计算运行时间来计算。我们最后在最佳控制理论中研究应用,并提供数字示例。