We construct high-order semi-discrete-in-time and fully discrete (with Fourier-Galerkin in space) schemes for the incompressible Navier-Stokes equations with periodic boundary conditions, and carry out corresponding error analysis. The schemes are of implicit-explicit type based on a scalar auxiliary variable (SAV) approach. It is shown that numerical solutions of these schemes are uniformly bounded without any restriction on time step size. These uniform bounds enable us to carry out a rigorous error analysis for the schemes up to fifth-order in a unified form, and derive global error estimates in $l^\infty(0,T;H^1)\cap l^2(0,T;H^2)$ in the two dimensional case as well as local error estimates in $l^\infty(0,T;H^1)\cap l^2(0,T;H^2)$ in the three dimensional case. We also present numerical results confirming our theoretical convergence rates and demonstrating advantages of higher-order schemes for flows with complex structures in the double shear layer problem.
翻译:我们为具有定期边界条件的不压缩纳维-斯托克斯方程式设计了高序半分解时间和完全分离(与空间中的Fourier-Galerkin)计划,并进行了相应的错误分析。这些计划基于一个星际辅助变量(SAV)方法,是隐含的显性类型。这些计划的数字解决方案被统一地捆绑,没有时间步数限制。这些统一界限使我们能够以统一的形式对直到第五级的计划进行严格的错误分析,并得出以美元(0,T;H%1)\cap l ⁇ 2(0,T;H%2)为两维案例的全球误差估计数,以及三个维案例的美元(0,T;H%1)\cap l ⁇ infty(2(0,T;H%1)\cap l2)当地误差估计数。我们还提供了数字结果,证实了我们的理论趋同率,并展示了在双层问题中与复杂结构流动的更高顺序计划的好处。