Our goal is to construct mathematical operations that combine indeterminism measured from quantum randomness with computational determinism so that non-mechanistic behavior is preserved in the computation. Formally, some results about operations applied to computably enumerable (c.e.) and bi-immune sets are proven here, where the objective is for the operations to preserve bi-immunity. While developing rearrangement operations on the natural numbers, we discovered that the bi-immune rearrangements generate an uncountable subgroup of the infinite symmetric group (Sym$(\mathbb{N})$) on the natural numbers $\mathbb{N}$. This new uncountable subgroup is called the bi-immune symmetric group. We show that the bi-immune symmetric group contains the finitary symmetric group on the natural numbers, and consequently is highly transitive. Furthermore, the bi-immune symmetric group is dense in Sym$(\mathbb{N})$ with respect to the pointwise convergence topology. The complete structure of the bi-immune symmetric group and its subgroups generated by one or more bi-immune rearrangements is unknown.


翻译:我们的目标是构建数学操作,将量子随机和计算确定性测量的不确定性结合起来,从而在计算中保留非机械行为。 形式上, 适用于可计算数字( c.e.) 和双模量组的操作结果在这里得到验证, 目标是保存双光度。 在根据自然数值进行重新排列操作的同时, 我们发现双模量重新排列产生一个无法计算无限对称组( Sym$ (mathbb{N}) 的子群, 在自然数值( ym$ (mathbb{N) $ ) 上无法计算。 这个新的不可计算分组被称为双光度相匹配组 。 我们显示, 双光度对称组包含自然数值的有根比对称组, 因而是高度过渡性的。 此外, 双光度对称组( mathb{N} } $ ) 在自然数值上无法计算出来的无限对数组群( ym$ ) 上, 其正数组与不为常数的两极正近的组结构。 我们显示, 两极的两极的两极的组结构结构结构比重的对数比结构。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
机器学习的可解释性
专知会员服务
68+阅读 · 2020年12月18日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月27日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Group Testing with a Graph Infection Spread Model
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月13日
VIP会员
相关VIP内容
机器学习的可解释性
专知会员服务
68+阅读 · 2020年12月18日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月27日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员