Our goal is to construct mathematical operations that combine indeterminism measured from quantum randomness with computational determinism so that non-mechanistic behavior is preserved in the computation. Formally, some results about operations applied to computably enumerable (c.e.) and bi-immune sets are proven here, where the objective is for the operations to preserve bi-immunity. While developing rearrangement operations on the natural numbers, we discovered that the bi-immune rearrangements generate an uncountable subgroup of the infinite symmetric group (Sym$(\mathbb{N})$) on the natural numbers $\mathbb{N}$. This new uncountable subgroup is called the bi-immune symmetric group. We show that the bi-immune symmetric group contains the finitary symmetric group on the natural numbers, and consequently is highly transitive. Furthermore, the bi-immune symmetric group is dense in Sym$(\mathbb{N})$ with respect to the pointwise convergence topology. The complete structure of the bi-immune symmetric group and its subgroups generated by one or more bi-immune rearrangements is unknown.
翻译:我们的目标是构建数学操作,将量子随机和计算确定性测量的不确定性结合起来,从而在计算中保留非机械行为。 形式上, 适用于可计算数字( c.e.) 和双模量组的操作结果在这里得到验证, 目标是保存双光度。 在根据自然数值进行重新排列操作的同时, 我们发现双模量重新排列产生一个无法计算无限对称组( Sym$ (mathbb{N}) 的子群, 在自然数值( ym$ (mathbb{N) $ ) 上无法计算。 这个新的不可计算分组被称为双光度相匹配组 。 我们显示, 双光度对称组包含自然数值的有根比对称组, 因而是高度过渡性的。 此外, 双光度对称组( mathb{N} } $ ) 在自然数值上无法计算出来的无限对数组群( ym$ ) 上, 其正数组与不为常数的两极正近的组结构。 我们显示, 两极的两极的两极的组结构结构结构比重的对数比结构。